32,672 research outputs found

    Weak gravity conjecture constraints on inflation

    Get PDF
    We consider the gravitational correction to the coupling of the scalar fields. Weak gravity conjecture says that the gravitational correction to the running of scalar coupling should be less than the contribution from scalar fields. For instance, a new scale Λ=λ41/2Mp\Lambda=\lambda_4^{1/2}M_p sets a UV cutoff on the validity of the effective λ4ϕ4\lambda_4 \phi^4 theory. Furthermore, this conjecture implies a possible constraint on the inflation model, e.g. the chaotic inflation model might be in the swampland.Comment: 11 pages, 3 figs; monor corrections; some clarifying remarks added and the final version for publication in JHE

    Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe

    Get PDF
    Motivated by our recent work \cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named LL.Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010

    The Measure for the Multiverse and the Probability for Inflation

    Full text link
    We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for NN e-folds is suppressed by a factor exp⁡(−3N)\exp(-3N), and the probability for the generalized nn-field slow roll inflation is suppressed by a much larger factor exp⁡(−3nN)\exp(-3nN). Some non-inflationary models such as the cyclic model do not suffer from this difficulty.Comment: 16 page

    An Implication of "Gravity as the Weakest Force"

    Get PDF
    The negative specific heat of a radiating black hole is indicative of a cataclysmic endpoint to the evaporation process. In this letter, we suggest a simple mechanism for circumventing such a dramatic outcome. The basis for our argument is a conjecture that was recently proposed by Arkani-Hamed and collaborators. To put it another way, we use their notion of ``Gravity as the Weakest Force'' as a means of inhibiting the process of black hole evaporation.Comment: 7 pages; v2 some discussion clarifie

    Holographic dark energy model with non-minimal coupling

    Full text link
    We find that holographic dark energy model with non-minimally coupled scalar field gives rise to an accelerating universe by choosing Hubble scale as IR cutoff. We show viable range of a non-minimal coupling parameter in the framework of this model.Comment: 7 pages, no figure, corrected some typos, to be published in Europhys. Let

    Gravitational Correction and Weak Gravity Conjecture

    Full text link
    We consider the gravitational correction to the running of gauge coupling. Weak gravity conjecture implies that the gauge theories break down when the gravitational correction becomes greater than the contribution from gauge theories. This observation can be generalized to non-Abelian gauge theories in diverse dimensions and the cases with large extra dimensions.Comment: 8 pages; minor correction and refs adde

    A geometric description of the non-Gaussianity generated at the end of multi-field inflation

    Full text link
    In this paper we mainly focus on the curvature perturbation generated at the end of multi-field inflation, such as the multi-brid inflation. Since the curvature perturbation is produced on the super-horizon scale, the bispectrum and trispectrum have a local shape. The size of bispectrum is measured by fNLf_{NL} and the trispectrum is characterized by two parameters τNL\tau_{NL} and gNLg_{NL}. For simplicity, the trajectory of inflaton is assumed to be a straight line in the field space and then the entropic perturbations do not contribute to the curvature perturbation during inflation. As long as the background inflaton path is not orthogonal to the hyper-surface for inflation to end, the entropic perturbation can make a contribution to the curvature perturbation at the end of inflation and a large local-type non-Gaussiantiy is expected. An interesting thing is that the non-Gaussianity parameters are completely determined by the geometric properties of the hyper-surface of the end of inflation. For example, fNLf_{NL} is proportional to the curvature of the curve on this hyper-surface along the adiabatic direction and gNLg_{NL} is related to the change of the curvature radius per unit arc-length of this curve. Both fNLf_{NL} and gNLg_{NL} can be positive or negative respectively, but τNL\tau_{NL} must be positive and not less than (65fNL)2({6\over 5}f_{NL})^2.Comment: 19 pages, 4 figures; refs added; a correction to \tau_{NL} for n-field inflation added, version accepted for publication in JCA

    Eternal Chaotic Inflation is Prohibited by Weak Gravity Conjecture

    Full text link
    We investigate whether the eternal chaotic inflation can be achieved when the weak gravity conjecture is taken into account. We show that even the assisted chaotic inflation with potential λϕ4\lambda\phi^4 or m2ϕ2m^2\phi^2 can not be eternal. The effective field theory description for the inflaton field breaks down before inflation reaches the eternal regime. We also find that the total number of e-folds is still bounded by the inflationary entropy for the assisted inflation.Comment: 10 page

    A Weak Gravity Conjecture for Scalar Field Theories

    Full text link
    We show that the recently proposed weak gravity conjecture\cite{AMNV0601} can be extended to a class of scalar field theories. Taking gravity into account, we find an upper bound on the gravity interaction strength, expressed in terms of scalar coupling parameters. This conjecture is supported by some two-dimensional models and noncommutative field theories.Comment: version published in JHE

    Revisit of the Interaction between Holographic Dark Energy and Dark Matter

    Full text link
    In this paper we investigate the possible direct, non-gravitational interaction between holographic dark energy (HDE) and dark matter. Firstly, we start with two simple models with the interaction terms Q∝ρdmQ \propto \rho_{dm} and Q∝ρdeQ \propto \rho_{de}, and then we move on to the general form Q∝ρmαρdeÎČQ \propto \rho_m^\alpha\rho_{de}^\beta. The cosmological constraints of the models are obtained from the joint analysis of the present Union2.1+BAO+CMB+H0H_0 data. We find that the data slightly favor an energy flow from dark matter to dark energy, although the original HDE model still lies in the 95.4% confidence level (CL) region. For all models we find c<1c<1 at the 95.4% CL. We show that compared with the cosmic expansion, the effect of interaction on the evolution of ρdm\rho_{dm} and ρde\rho_{de} is smaller, and the relative increment (decrement) amount of the energy in the dark matter component is constrained to be less than 9% (15%) at the 95.4% CL. By introducing the interaction, we find that even when c<1c<1 the big rip still can be avoided due to the existence of a de Sitter solution at z→−1z\rightarrow-1. We show that this solution can not be accomplished in the two simple models, while for the general model such a solution can be achieved with a large ÎČ\beta, and the big rip may be avoided at the 95.4% CL.Comment: 26 pages, 9 figures, version accepted for publication in JCA
    • 

    corecore